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The birth-death model

We start with the most basic birth-death model – sometimes called
the Yule Model

Individuals/species replicate at some rate, but they never die
Specifically, assume the following:

we start with one individual/species at time t = 0

Each individual/species produces a new individual/species at
rate λ

(So, the time until a lineage gives “birth” is T ∼ Exp(λ) )
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The Yule model
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This is a continuous-time Markov chain

Continuous-time Markov chain with a countable state space!

What is the probability the system has n individuals at time t,
given that we start with one individual at time t = 0?
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Master equation:

We need to keep track of the ways to move in and out of the state
characterized by n individuals alive at time t

dPn

dt
= −nλPn + (n − 1)λPn−1

A birth moves us out of Pn to Pn+1, and the only way to enter

into Pn is from Pn−1
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Master equation:

dPn

dt
= −nλPn + (n − 1)λPn−1

The solution to this Master equation is Pn(t), the probability of n

individuals at time t

Can solve this using (i) generating functions, (ii) guess and check
(the solution is a time-dependent geometric distribution), or (iii)
mathematical induction1

1Tanja Stadler et al. Decoding genomes: from sequences to phylodynamics.
ETH Zurich, 2024.
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Adding death

What if individuals/lineages can also die at rate µ?
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Without death

In the Yule model, extinction is impossible
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Adding death

In the birth-death model, extinction is possible: once we enter the
state with 0 lineages, we are stuck – can’t have birth from nothing

The state n = 0 is an absorbing state of this continuous-time
Markov chain
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Adding death2

dPn

dt
= −nλPn + (n − 1)λPn−1 − µnPn + µ(n + 1)Pn+1 for n ≥ 1,

...

dP1

dt
= −λP1 − µP1 + 2µP2,

dP0

dt
= µP1.

2Sean Nee, Robert Mccredie May, and Paul H Harvey. “The reconstructed
evolutionary process”. In: Philosophical Transactions of the Royal Society of
London. Series B: Biological Sciences 344.1309 (1994), pp. 305–311.
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Forward vs. Backward equations

dPn

dt
= −nλPn + (n − 1)λPn−1 − µnPn + µ(n + 1)Pn+1 for n ≥ 1,

...

dP1

dt
= −λP1 − µP1 + 2µP2,

dP0

dt
= µP1.

This equation (and the others up to now) is a Forward equation.
Given an initial condition at time t = 0, the Pn(t) characterize the
system at some time, t, in the future
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Forward vs. Backward equations

However, we can also pose a different question: given a
measurement of the system at the present time, what was the
likely configuration of the system some time in the past?

Solutions to the Forward Kolmogorov equations tell us how the
system propagates forward in time from an initial condition

Solutions to the Backward Kolmogorov equation will
characterize the system’s earlier configuration

Which of these equations seems more relevant for
reconstructing evolutionary scenarios?
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Backward Kolmogorov equation for a
birth-death model

Let’s derive a Backward Kolmogorov equation. The logic is slightly
different.

Let’s still use the convention that time is measured in the forward
sense, that is, we observe Pn(t) but want to understand Pn(s) for
s < t

Let’s start by reexamining where this comes from:

dPn

dt
= −nλPn + (n − 1)λPn−1 − µnPn + µ(n + 1)Pn+1
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Forward Kolmogorov equation derivation for
a birth-death model

This ODE

dPn

dt
= −nλPn + (n − 1)λPn−1 − µnPn + µ(n + 1)Pn+1,

arises from the following:

Pn(t +∆t) =(1− n(λ+ µ)∆t)Pn(t)+

(n − 1)λ∆tPn−1(t)+

(n + 1)µ∆tPn+1

Start in Pn and nothing happens; or, start in Pn−1 and there is a
birth; or, start in Pn+1 and then there is a death
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Forward vs. Backward Kolmogorov equation
derivations for a birth-death model

This derivation relates the system at time t +∆t to the system at
earlier time t:

Pn(t +∆t) =(1− n(λ+ µ)∆t)Pn(t)+

((n − 1)λ∆t)Pn−1(t)+

((n + 1)µ∆t)Pn+1(t).

We can use similar logic to relate the system at time t −∆t to the
system at a later time t:

Pn(t −∆t) =(1− n(λ+ µ)∆t)Pn(t)+

(nλ∆t)Pn+1(t)+

(nµ∆t)Pn−1(t).
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Forward vs. Backward Kolmogorov equation
derivations for a birth-death model

Forward Equation in English: we can end up in Pn at t +∆t if we
start from Pn(t) and nothing happens, if we start in Pn−1(t) and
there is a birth, or we start in Pn+1(t) and there is a death:

Pn(t +∆t) =(1− n(λ+ µ)∆t)Pn(t)+

((n − 1)λ∆t)Pn−1(t)+

((n + 1)µ∆t)Pn+1(t).

Backward Equation in English: we could have come from Pn at
t −∆t if nothing happened and we ended up in Pn(t), if there was
a birth and we ended up in Pn+1(t), or if there was a death and we
ended up in Pn−1(t)

Pn(t −∆t) =(1− n(λ+ µ)∆t)Pn(t)+

(nλ∆t)Pn+1(t)+

(nµ∆t)Pn−1(t).
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The Backward Kolmogorov equation
derivation for a birth-death model

Rearranging terms, dividing by ∆t, and taking the limit ∆t → 0 of
this equation,

Pn(t −∆t) =(1− n(λ+ µ)∆t)Pn(t)+

(nλ∆t)Pn+1(t)+

(nµ∆t)Pn−1(t),

we obtain

dPn

dt
=− n(λ+ µ)Pn + (nµ)Pn−1 + (nλ)Pn+1.
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The Forward vs. Backward Kolmogorov
equations for a birth-death model

We had this Forward equation before:

dPn

dt
= −nλPn + (n − 1)λPn−1 − µnPn + µ(n + 1)Pn+1,

and now we also have this Backward equation:

dPn

dt
=− n(λ+ µ)Pn + (nµ)Pn−1 + (nλ)Pn+1.

Can you see the relationship between these?

The Forward equation has the form dP/dt = QP, and the
Backward equation is dP/dt = Q∗P, where Q∗ is the adjoint of Q.
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The Forward vs. Backward Kolmogorov
equations for a birth-death model

We had this Forward equation before:

dPn

dt
= −nλPn + (n − 1)λPn−1 − µnPn + µ(n + 1)Pn+1,

and now we also have this Backward equation:

dPn

dt
=− n(λ+ µ)Pn + (nµ)Pn−1 + (nλ)Pn+1.

Can you see the relationship between these?

The Forward equation has the form dP/dt = QP, and the
Backward equation is dP/dt = Q∗P, where Q∗ is the adjoint of Q.
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The Forward vs. Backward Kolmogorov
equations for a birth-death model

dPn

dt
=− n(λ+ µ)Pn + (nµ)Pn−1 + (nλ)Pn+1.

The backward equation is still using the convention that time t
increments in forward time. Later, we will transform the time
variable so that 0 coincides with the present, and time increases
going into the past.
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Backward Kolmogorov equation for a
birth-death model

So what? What is the point of doing all of this?

With phylogenetic trees, we observe species at the present day. We
want to understand the process that gave rise to an obeservation
at the present time. The likelihood for the state-dependent
speciation and extinction models uses Backward equations to
obtain the probability of a given tree.
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What if there are multiple states?

The binary state-dependent speciation and extinction
(BiSSE) model extends the birth-death model. Lineages reproduce
and go extinct, but possibly at different rates depending on their
state. They can migrate/mutate between two states:

We will superimpose this model on a fixed phylogenetic tree next
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BiSSE equations (on a single branch)

Let’s first adopt the convention that time, t, increments going
backward into the past3

We are given a phylogenetic tree, and it is assumed fixed/known.

3Wayne P Maddison, Peter E Midford, and Sarah P Otto. “Estimating a
binary character’s effect on speciation and extinction”. In: Systematic biology
56.5 (2007), pp. 701–710.
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BiSSE equations

Births in this stochastic process will correspond to bifurcations in
phylogenetic trees

Deaths/extinctions mean that we will not observe certain lineages

Migrations in the stochastic process will correspond to changes of
state on branches of a phylogeny
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BiSSE equations

Introduce some variables:

Let 0 be the time at the present, and tR be the time that coincides
with the root of the tree, so that time t increments going into the
past

Let DNi (t) be the probability a lineage existing at time t in state i
evolves into the clade descending from node N that we observe at
time 0.

Possible events:

birth/diversification at rate λi

death/extinction at rate µi

mutation/migration between states at rates q10 and q01

Another key variable: let Ei (t) be the probability that a lineage in
state i at time t goes extinct before we observe it later at time 0
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BiSSE equations4

Now, let’s derive a Backward equation for the DNi (t):

DN0(t +∆t) =(1− (λ0 + µ0 + q01)∆t)DN0(t)+

(q01∆t)DN1(t) + (2λ0∆t)E0(t)DN0(t),

DN1(t +∆t) =(1− (λ1 + µ1 + q10)∆t)DN1(t)+

(q10∆t)DN0(t) + (2λ1∆t)E1(t)DN1(t).

We then apply the standard trick of rearranging terms, dividing by
∆t, and taking the limit ∆t → 0

4Wayne P Maddison, Peter E Midford, and Sarah P Otto. “Estimating a
binary character’s effect on speciation and extinction”. In: Systematic biology
56.5 (2007), pp. 701–710.
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BiSSE equations5

dDN0

dt
=− (λ0 + µ0 + q01))DN0(t) + q01DN1(t)+

(2λ0)E0(t)DN0(t),

dDN1

dt
=− (λ1 + µ1 + q10))DN1(t) + q10DN0(t)+

(2λ1)E1(t)DN1(t).

5Wayne P Maddison, Peter E Midford, and Sarah P Otto. “Estimating a
binary character’s effect on speciation and extinction”. In: Systematic biology
56.5 (2007), pp. 701–710.
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BiSSE equations6

dDN0

dt
=− (λ0 + µ0 + q01))DN0(t) + q01DN1(t)+

(2λ0)E0(t)DN0(t),

dDN1

dt
=− (λ1 + µ1 + q10))DN1(t) + q10DN0(t)+

(2λ1)E1(t)DN1(t).

To solve these equations, we start at the tips of the tree and work
up towards nodes, and ultimately, the root of the tree

6Wayne P Maddison, Peter E Midford, and Sarah P Otto. “Estimating a
binary character’s effect on speciation and extinction”. In: Systematic biology
56.5 (2007), pp. 701–710.
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BiSSE equations7

dDN0

dt
=− (λ0 + µ0 + q01))DN0(t) + q01DN1(t)+

(2λ0)E0(t)DN0(t),

dDN1

dt
=− (λ1 + µ1 + q10))DN1(t) + q10DN0(t)+

(2λ1)E1(t)DN1(t).

So, if A is the ancestor of two sister lineages corresponding to
nodes N and M, then at the speciation time tA we set

DA0(tA) =DN0(tA)DM0(tA)λ0,

DA1(tA) =DN1(tA)DM1(tA)λ1,

and then the DAi (tA) are the initial conditions for the equations up
the branch toward the root

7Wayne P Maddison, Peter E Midford, and Sarah P Otto. “Estimating a
binary character’s effect on speciation and extinction”. In: Systematic biology
56.5 (2007), pp. 701–710.
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BiSSE equations

The DNi (T ) are initialized at the tips, and equal either 0 or 1
because we can observe the tip states

At the root, R, which is at time tR , we end up two terms

DR0(T ) =DN0(tR)DM0(tR)λ0,

DR1(T ) =DN1(tR)DM1(tR)λ1.

There are different options for averaging these to produce the
overall likelihood of the tree, but the default method8 is take a
weighted average

L = DR(tR) = pDR0(tR) + (1− p)DR1(tR)

8Wayne P Maddison, Peter E Midford, and Sarah P Otto. “Estimating a
binary character’s effect on speciation and extinction”. In: Systematic biology
56.5 (2007), pp. 701–710.
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BiSSE equations

The variable p is defined as the equilibrium probability that a
lineage resides in state 0, and is calculated by solving for the
equilibrium of the ODEs

dn0
dt

=(λ0 − µ0)n0 − q01n0 + q10n1,

dn1
dt

=(λ1 − µ1)n1 − q10n1 + q01n0,

n0 and n1 representing the expected number of lineages in state 0
and 1, respectively.
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BiSSE likelihood

To summarize: the BiSSE likelihood generalizes the Markov
models we saw for ancestral character estimation and stochastic
character mapping

Where the Markov models calculate transition probabilities across
branches of the phylogeny, the BiSSE model also accounts for
speciation (λ) and extinction (µ) dynamics that affect the length
of the branches

The overall calculation strategy for the BiSSE likelihood is similar:

Start at the tips and calculate conditional likelihoods of
subtrees

average conditional likelihoods along branches when they
meet a node

upon reaching the root, average the conditional likelihoods to
obtain the likelihood of the tree
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Working in R

We will use the R package diversitree to simulate and fit these
models to example datasets We will compare our results with

BiSSE to results from ace and simmap

Make sure you have the following R packages installed:

diversitree

ape

phytools
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Working in R

These functions simulate trees using these models:

tree.bd (birth death trees)

tree.bisse (BiSSE tree)

tree.mussse (MuSSE tree)

look at ?tree.bisse for information about others (quasse –
quantitative traits, hisse – hidden traits)
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Working in R

These functions define likelihood models on trees:

make.bd (birth death trees)

make.bisse (BiSSE tree)

make.mussse (MuSSE tree)

you get the idea

The find.mle function is useful for obtaining Maximum Likelihood
Estimates for parameters

The constrain function is useful for setting parameters to fixed
values in Maximum likelihood estimation
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