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Why do ancestral character estimation?

In evolutionary biology, we might ask: how did a current set of
traits evolve?

?

? Carnivore

Carnivore

Herbivore
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The historical development of these methods:

Originally, the methods we are about to discuss were developed for
understanding correlated evolution of ≥ 2 traits
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Example: Is evolution of diet correlated with habitat?

Traits might be correlated because of common ancestry. Needed to
develop methods to account for this
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A variety of methods for ancestral
reconstruction

A number of different methods to infer ancestral states exist:

parsimony

Markov models of discrete state changes

Brownian motion or Ornstein-Uhlenbeck for continuous traits
changing over time (but we won’t discuss in this workshop)
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Parsimony

Parsimony is intuitive and seems reasonable at first glance

There are some undesirable outcomes from this method

multiple changes might occur over long periods of time

parsimony reconstructions may not be unique, and it is also
difficult to quantify uncertainty in ancestral inferences
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A different approach: using Markov models

If traits evolve in a neutral fashion, then we could model them in
the same way that we imagine nucleotides in genomes change over
time

For discrete traits, we postulate a rate of change from each trait
value to another
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Markov chains underlie phylogenetic
reconstruction

Nucleotide changes over time are modeled with continuous-time
Markov chains .. why not do this with discrete traits as well?

A T

C G

qAT

qAC

qTA

qTC
qCA

qCT qAG

qGA

qGT qTG

qGC

qCG

Typical to treat nucleotides in the genome as independent
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Essential features of Markov chains

If you worked through Simulating nucleotide substitution models
on the website, you may have familiarized yourself with some of
the mathematics of Markov chains

Briefly, we will discuss some of the essential features together
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Transition probabilities

Suppose we have a simple 2-state Markov chain with transitions
occurring in continuous time

We let Pi (t) represent the probability that the chain resides in
state i at time t

In our simple 2-state case, we can write ordinary differential
equations (ODEs) describing rates of change in state probabilities:

dP1

dt
= −q12P1 + q21P2,

dP2

dt
= q12P1 − q21P2.
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Transition probabilities

dP1

dt
= −q12P1 + q21P2,

dP2

dt
= q12P1 − q21P2.

In the R demo for nucleotide substitution models, we show how to
solve this sytem by hand. There are two key steps

recognize that P1 + P2 = 1 to eliminate a variable

use an integrating factor to solve the one-dimensional ODE
that is left
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Transition probabilities

In the demo, we see that solutions to the system

dP1

dt
= −q12P1 + q21P2,

dP2

dt
= q12P1 − q21P2,

have the form

P1 = P1,0e
−(q12+q21)t +

q21
q12 + q21

(
1− e−(q12+q21)t

)
,

P2 = P2,0e
−(q12+q21)t +

q12
q12 + q21

(
1− e−(q12+q21)t

)
.
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Transition probabilities

P1 = P1,0e
−(q12+q21)t +

q21
q12 + q21

(
1− e−(q12+q21)t

)
,

P2 = P2,0e
−(q12+q21)t +

q12
q12 + q21

(
1− e−(q12+q21)t

)
.

Examining the behavior of this solutions, we verify that
Pi (0) = Pi ,0 (satisfies initial conditions)

We also immediately see the long-term behavior:
limt→∞ Pi (t) =

qji
qij+qji
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Stochastic rate matrix

If we go back to the original ODEs,

dP1

dt
= −q12P1 + q21P2,

dP2

dt
= q12P1 − q21P2,

we can re-write this system as

dP

dt
= QP,

where

Q =

(
−q12 q21
q12 −q21

)
and P = (P1,P2)

T .
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Stochastic rate matrix

Writing Q like this:

Q =

(
−q12 q21
q12 −q21

)
,

is using the convention that qij is the transition rate from state i
to state j .
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Stochastic rate matrix

Sometimes, the entries of Q are written like this,

Q =

(
−q21 q12
q21 −q12

)
,

so that qij is the transition rate into state i from state j .

Pay careful attention to this when working in R!
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Stochastic rate matrix

Q =

(
−q12 q21
q12 −q21

)
,

A stochastic rate matrix like this always has the property that rates
in columns sum to zero

Thus, all stochastic rate matrices have a nullspace, i.e., a zero
eigenvalue, making them singular

Stochastic matrices also have negative terms on the diagonal. The
sum of the diagonal equals sum of the eigenvalues – so we know
that the sum of the eigenvalues is negative
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Stochastic rate matrix

Q =

(
−q12 q21
q12 −q1

)
,

In this example, the nullspace of Q, N (Q), is spanned by the
vector

P∗ =

(
q21
q12

)
.

If we normalize this vector, we get

P∗ =

(
q21

q12+q21
q12

q12+q21

)
.
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Stochastic rate matrix

P∗ =

(
q21

q12+q21
q12

q12+q21

)
.

This vector is the same one that describes the long-term behavior
of the system

P1 = P1,0e
−(q12+q21)t +

q21
q12 + q21

(
1− e−(q12+q21)t

)
,

P2 = P2,0e
−(q12+q21)t +

q12
q12 + q21

(
1− e−(q12+q21)t

)
.
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Stochastic rate matrix

This is no coincidence. The normalized vector P∗ satisfying

dP∗

dt
= QP∗ = 0

corresponds to the stationary distribution of the Markov chain

Regardless of the initial conditions, in the long term limit, the
probability of finding the Markov chain in a particular state is
described by the stationary distribution
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Master equation

In general, can always obtain the probabilities of a Markov chain
by solving the equation

dP

dt
= QP.

This is called the Master equation, or sometimes the
Kolmogorov equation, the Chapman-Kolmogorov equation, or
the Forward Kolmogorov equation

We may use these terms throughout the workshop.
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Analyzing the Master eqution

Whenever the matrix Q does not depend on t, we can easily solve
the Master equation,

dP

dt
= QP.

The general solution is

P(t) = P0e
Qt ,

where P0 is an initial condition capturing the probability the chain
resides in a particular state at time t = 0, and eQt is the matrix
exponential

This is true for an arbitrary (but finite) collection of states
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Calculating transition probabilities

The general solution is

P(t) = eQtP0,

where P0 is the vector of initial state probabilities at time 0, and
eQt is the matrix exponential operation defined by

eAt = I + At +
1

2
!(At)2 +

1

3!
(At)3 + ... (1)

In R, the function expm (from the package of the same name) can
calculate this numerically. So, in practice, we just need the
stochastic rate matrix, Q, and an initial condition P0
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Does a stationary distribution always exist?

There is always a 0 eigenvalue of the matrix Q

This means rows/columns are not independent, so we can always
find a vector in the nullspace of Q, N (Q)

If N (Q) is spanned by a single vector, then the stationary
distribution is unique because of the requirement that

∑
i Pi = 1

(assuming some other requirements on Q like aperiodicity and
positive recurrence)
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Properties guaranteeing a unique stationary
distribution

Positive recurrence: the expected time for the Markov chain to
return to any particular state is finite

Irreducibility: for a continuous-time Markov chain, there is a
positive probability of transitioning from one state to any other
(the state space cannot be decomposed into disjoint sets having
transitions only amongst themselves)
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Back to the original motivation: modeling
correlated evolution of two traits

(0, 0) (1, 0)

(0, 1) (1, 1)

(x , y) = (trait 1 value, trait 2 value)
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Markov models for binary trait evolution

We will use Markov models on trees for the next several days to
understand phylogeography

Q =

(
−λ12 λ21

λ12 −λ21

)
Can we use these models to understand evolutionary histories?
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Markov models for geographic movement

We are given a phylogenetic tree, T , we have information about
tip locations, xi , and we consider a continuous-time Markov chain
defined on the tree describing location changes

x2 = B

x3 = B

x4 = B

x1 = A

y1 = A

y2 = A

y3 = B

l1

l2

l3
l4

l5l6

If we knew the locations of internal nodes, yi , we could calculate
the probability of observing the tip states, xi :

P(−→x ,−→y |T ) =
π(y1)p(x4|y1)p(y2|y1)p(x1|y2)p(y3|y2)p(x2|y3)p(x4|y3)
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Markov models for geographic movement
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Calculating likelihood

x2 = B

x3 = B

x4 = B

x1 = A

y1 = A

y2 = A

y3 = B

l1

l2

l3
l4

l5l6? ?
?

We don’t actually know the the locations of internal nodes, yi , so
we have to sum over all possible configurations:

P(−→x |T ) =∑
−→y π(y1)p(x4|y1)p(y2|y1)p(x1|y2)p(y3|y2)p(x2|y3)p(x4|y3)
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Pruning

We can economize on computations by “pruning”:

∑
−→y

π(y1)p(x4|y1)p(y2|y1)p(x1|y2)p(y3|y2)p(x2|y3)p(x4|y3) =

∑
y1

(π(y1)p(x4|y1)×∑
y2

(p(y2|y1)p(x1|y2)×∑
y3

(p(y3|y2)p(x2|y3)p(x3|y3))))
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Can fit to data using Maximum Likelihood

x2 = B

x3 = B

x4 = B

x1 = A

y1 = A

y2 = A

y3 = B

l1

l2

l3
l4

l5l6? ?
?

The transition probabilities p(yj |yi ), p(xk |yj) depend on
parameters, θ, of a continuous-time Markov chain that we specify;
if we interpret P(−→x |T , θ) as a function of θ, then we can fit the
Markov model to the data (T , −→x ) using Maximum Likelihood



Intro Markov chains Likelihood of ancestral states R

Markov models for binary trait evolution

In the original analysis, Pagel compared two Markov models:

If the traits evolve in a correlated manner, state changes between
the four combinations of states are modeled with a 4× 4 Markov
generator (up to 12 parameters):

Q =


−
∑

j ̸=1 λ1j λ12 λ13 λ14

λ21 −
∑

j ̸=2 λ2j λ23 λ24

λ31 λ32 −
∑

j ̸=3 λ3j λ34

λ41 λ42 λ43 −
∑

j ̸=4 λ4j


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Markov models for binary trait evolution

If the traits evolve independently of each other, state changes
between the four combinations of states are modeled with two
independent Markov chains, each with a 2× 2 Markov generator (4
parameters):

Q(1) =

(
−λ

(1)
12 λ

(1)
21

λ
(1)
12 −λ

(1)
21

)
Q(2) =

(
−λ

(2)
12 λ

(2)
21

λ
(2)
12 −λ

(2)
21

)

If the more complicated model fits significantly better after
accounting for the larger number of parameters, that suggests trait
evolution is correlated.
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Working in R

We will use the R package ape to simulate and fit these models to
example datasets (and real ones) Make sure you have the following

R packages installed:

ape

phytools

any other packages to make errors go away
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Working in R

In the practical, you will

Fit Markov models to trees with tip states

Simulate fitted Markov models

Explore some example datasets
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